A Win-Win Camera:

Quality-Enhanced Power-Saving Images on Mobile OLED Displays

Chih-Kai Kang¹, Chun-Han Lin², Pi-Cheng Hsiu¹

¹Center for Information Technology Innovation, Academia Sinica, Taiwan

²Department of Computer Science and Information Engineering, National Taiwan Normal University, Taiwan

Motivation

- Existing OLED power-saving techniques change users' visual \bullet experience or degrade images' visual quality in exchange for power reduction, or seek a chance to enhance image quality by employing a compound objective function.
- Quality enhancement has its necessity because users are often lack of photographic expertise or lighting conditions are not always ideal.

OLED Image Display

- OLED power can be reduced by scaling down the brightness levels of lacksquarepixels.
- Image quality can be enhanced by redistributing pixels' brightness levels to better use the full intensity range.

Contributions

- A win-win scheme that always enhances image quality and reduces power consumption simultaneously.
 - Metrics to assess the profit and cost of potential image enhancement and power reduction
 - Algorithms to transform an image into quality-enhanced power saving versions
 - A practical camera application for practicality validation on commercial **OLED** devices

Visual Quality vs. Power Consumption

- A quality-enhanced image can consume less OLED power than its original image (not significantly though).
- Is there a scheme that always enhances image quality and reduces power consumption simultaneously?

Kodak image database

A Win-Win Scheme

- **Contrast and Power Metrics**
- Contrast Metric:
 - Contrast is the difference in brightness that makes some pixels distinguishable from the others: $C(H) = \sum_{i=0}^{255} pdf(i) \times \delta(i)$.
- Power Metric:
 - The power required by an image is the sum of the power consumed by all the pixels: $P(H) = \sum_{i=0}^{255} pdf(i) \times e(i)$.
- Contrast-to-Power Index:
 - Which brightness level to be adjusted? $CPI(x) = pdf(x) \times cdf(x)$ to assess the preferability of increasing level x's distance.

B. Fundamental Algorithms

- Input: A histogram **H** and a power function **e**.
- **Output:** The minimum power P_{min} .
 - 1: Compute pdf(x), cdf(x), CPI(x), $\forall x$, based on H
 - 2: Build $\delta(x)$ based on pdf(x), $\forall x$, by WTHE
 - $3: \delta(x) \leftarrow 0 \text{ if } pdf(x) = 0, and 1 \text{ otherwise}, \forall x$
 - 4: Build \widehat{H} based on H and δ
 - 5: while $C(\widehat{H}) < C(H)$ do
 - $\delta(x) \leftarrow \max([\delta(x) \times 255], 1)$ for x with the largest CPI(x)6:

Performance Evaluation

- Platform
 - Samsung Galaxy Tab 7.7
- Image Set
 - Kodak image database (24 Images covering a variety of themes and lighting conditions)
- **Performance Metrics**
 - Quality scored by EME
 - OLED power measured
- **Compared Algorithms**
 - HMA: Pure image enhancement approach [TIP'09]
 - CURA: Pure power reduction approach [DAC'14]
 - **CPI**: Our win-win approach

- Numerical Results
 - HMA and CPI increase EME scores by 3.9 and 3.4 times
 - CURA and CPI reduce OLED power by 37% and 27%

 $CPI(x) \leftarrow -1$ Update \widehat{H} based on δ 8: 9: return $P_{min} \leftarrow P(\hat{H})$

A Win-Win Camera for OLED Mobile Devices

- A stand-alone Android app on a Samsung Galaxy Tab 7.7.
- Transforming a picture takes 96ms, while each subsequent editing takes 14ms.

A snapshot of our win-win camera

Conclusion

- Rationale behind our win-win camera
 - Contrast is much more central than the absolute brightness to the image quality perceived by the human visual system.
- **Experiment results on Samsung Galaxy Tab 7.7**
 - 88% of the image quality enhanced by HMA [TIP'09], a pure image enhancement approach.
 - 73% of the OLED power reduced by CURA [DAC'14], a pure power reduction approach.

