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Gesture recognition provides an intuitive and convenient 
means for human-machine interaction in various 
environments.

 Three major challenges:
• Large intra-class variations
• Subtle inter-class variations
• Ubiquitous environments

Our goal in this project is to 
• Leverage multi-modal signals captured by diverse mobile 

sensors 
• Develop a new network layer for adaptive multi-modal   

learning.

IsoGD dataset

source: Chalearn Gesture challenge

camera smart-watch

source: sculpteo

Goal

Motivation

 Large data variations from diverse user behaviors and 
ubiquitous environments. multi-modal signals

 Optimal features for recognition often varies from gesture to 
gesture.  adaptive learning
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Related Work

[Xiang et al., ICCV 2015][Srivastava et al., NIPS 2012]

• Most multi-modal approaches seek an immutable combination of 
multi-modal information.

• Adaptive tree-structured CNNs models have exponentially many 
sub-networks.

Our Approach: Adaptive Hidden Layers
We propose a new network layer, called the adaptive hidden layer 

(AHL), which is composed of multiple neuron groups and an extra 
selector.

- Neuron groups: generate different activation maps.
- Selector: adaptively picks a plausible group for each input.

Differential module  end-to-end trainable
When stacking multiple AHLs
 Linearly increased #parameters computationally feasible
Exponentially many forward paths  high flexibility

Training Issues

Backward Propagation

Data balance issue: the selector might assign most data to a or few 
subsets of neuron groups due to bad initialization of weights.

 Two training tips to resolve this issue
• k-means clustering: partition the training data at the first epoch
• SBR: an entropy-based function, called selection balancing 

regularizer (SBR), to encourage even distribution of data over 
neuron groups
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Two Datasets for Performance Evaluation
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Experimental Results

approach accuracy

DAE + HOG 81.52%

DAE + ACCE 76.24%

DAE + conc. feat. 82.34%

multi-modal DAE 86.48%

double-sized multi-modal DAE 86.02%

Ours 90.57%

approach accuracy

C3D + ConVLSTM(RGB) 43.88% 

Ours (RGB) 44.88%

C3D + ConVLSTM(Depth) 44.66%

Ours (Depth) 48.96%

C3D+ConvLSTM(RGB + Depth) 51.02%

Our (RGB+Depth) 54.14%

More Results

Network Architecture

Modalities: RGB and depth videos
Data: 47933 gestures of 249 classes

Modalities: RGB videos & motion signal
Data: 4704 gestures of 14 classes

IsoGD dataset Our collected dataset
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